-23=-16(t^2-t)

Simple and best practice solution for -23=-16(t^2-t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -23=-16(t^2-t) equation:



-23=-16(t^2-t)
We move all terms to the left:
-23-(-16(t^2-t))=0
We calculate terms in parentheses: -(-16(t^2-t)), so:
-16(t^2-t)
We multiply parentheses
-16t^2+16t
Back to the equation:
-(-16t^2+16t)
We get rid of parentheses
16t^2-16t-23=0
a = 16; b = -16; c = -23;
Δ = b2-4ac
Δ = -162-4·16·(-23)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-24\sqrt{3}}{2*16}=\frac{16-24\sqrt{3}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+24\sqrt{3}}{2*16}=\frac{16+24\sqrt{3}}{32} $

See similar equations:

| 13-8x=-27 | | k-12=-12-5k | | x-1/6=-1/5 | | w+10=-8+2w | | 8x+6=2(2x+43) | | 3x*x=10 | | H=-16t^2+16t+23 | | 7(x+1)+7x=45353 | | 3t+8=10-6t | | 8x-9=5(x+2) | | 2x-(5x+6)=9 | | 5(x-1)=8x-3-1 | | v-7.42=8.88 | | w-4.54=6.6 | | y+3.2=9.83 | | 9+2x=5x+11 | | 12/17=4.20/c | | -3+x+2=7 | | 12/4.20=17/c | | 10/3=115/c | | 377/x=13/5 | | a/39=14/6 | | m-10=5+4m | | 2.5+x-3.2=7 | | 36/m=12/5 | | (-13.6/x)-(-13.6/1)=12.1 | | 16x+9x+8x=11 | | x/14=3/7 | | y-8=11-3y | | -2x+3=-4x-11 | | -2x+3=4x-11 | | 5=+3x-9 |

Equations solver categories